20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

MJ11028, MJ11030, MJ11032 (NPN) MJ11029, MJ11033 (PNP)

High-Current Complementary Silicon Power Transistors

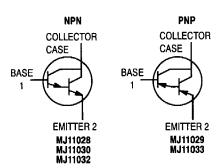
High-Current Complementary Silicon Power Transistors are for use as output devices in complementary general purpose amplifier applications.

Features

- High DC Current Gain $h_{FE} = 1000 \text{ (Min)} @ I_C = 25 \text{ Adc}$ $h_{FE} = 400 \text{ (Min)} @ I_C = 50 \text{ Adc}$
- Curves to 100 A (Pulsed)
- Diode Protection to Rated I_C
- Monolithic Construction with Built-In Base-Emitter Shunt Resistor
- Junction Temperature to +200°C

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	MJ11028/29 MJ11030 MJ11032/33	V _{CEO}	60 90 120	Vdc
Collector-Base Voltage	MJ11028/29 MJ11030 MJ11032/33	V _{CBO}	60 90 120	Vdc
Emitter-Base Voltage		V _{EBO}	5.0	Vdc
Collector Current - Continuous - Peak (Note 1)		Ic	50 100	Adc
Base Current - Continuous		Ι _Β	2.0	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C @ T _C = 100°C		P _D	300 1.71	W/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-55 to +200	°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Maximum Lead Temperature for Soldering Purposes for ≤ 10 seconds	TL	275	°C
Thermal Resistance, Junction-to-Case	R _{eJC}	0.58	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Pulse Test: Pulse Width = 5 μs, Duty Cycle ≤ 10%.

50 AMPERE
COMPLEMENTARY
DARLINGTON POWER
TRANSISTORS
60 - 120 VOLTS
300 WATTS

(TO-3)

Quality Semi-Conductors

MJ11028, MJ11030, MJ11032 (NPN)

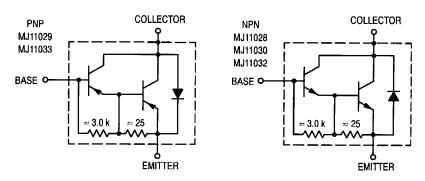


Figure 1. Darlington Circuit Schematic

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	*	· · · · · · · · · · · · · · · · · · ·
Collector-Emitter Breakdown Voltage (Note 1) (I _C = 1 00 mAdc, I _B = 0)	MJ11028, MJ11029 MJ11030 MJ11032, MJ11033	V _{(BR)CEO}	60 90 120	- -	Vdc
	MJ11028, MJ11029 MJ11030 MJ11032, MJ11033 MJ11028, MJ11029 MJ11032, MJ11033	ICER	- - - -	2 2 2 10 10	mAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)		I _{EBO}	_	5	mAdc
Collector-Emitter Leakage Current (V _{CE} = 50 Vdc, I _B = 0)		ICEO	_	2	mAdc
ON CHARACTERISTICS (Note 1)			·1		I
DC Current Gain (I _C = 25 Adc, V _{CE} = 5 Vdc) (I _C = 50 Adc, V _{CE} = 5 Vdc)		h _{FE}	1 k 400	18 k -	_
Collector–Emitter Saturation Voltage ($I_C = 25$ Adc, $I_B = 250$ mAdc) ($I_C = 50$ Adc, $I_B = 500$ mAdc)		V _{CE(sat)}	_ _	2.5 3.5	Vdc
Base–Emitter Saturation Voltage (I_C = 25 Adc, I_B = 200 mAdc) (I_C = 50 Adc, I_B = 300 mAdc)		V _{BE(sat)}		3.0 4.5	Vdc

^{1.} Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.